Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(4-Pyridyl)benzoic acid

Jianxin Xing

Department of Biology, Dezhou University, Dezhou Shandong 253023, People's Republic of China

Correspondence e-mail: dzxingjianxin@yahoo.cn

Received 11 April 2009; accepted 26 April 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.135; data-to-parameter ratio = 17.3.

The molecule of the title compound, $C_{12}H_9NO_2$, is not planar, the benzene and pyridine rings making a dihedral angle of 32.14 (7)°. The carboxy group is slightly twisted with respect to the benzene ring by 11.95 (10)°. In the crystal structure, intermolecular $O-H\cdots N$ hydrogen bonds link neighboring molecules into infinite chains along the *c* axis.

Related literature

For coordination polymers with pyridine carboxylate, see: Lu & Luck (2003); Luo *et al.* (2007).

Experimental

Crystal data C₁₂H₉NO₂

 $M_r = 199.20$

OH

Orthorhombic, *Pbca* a = 13.839 (3) Å b = 7.013 (7) Å c = 19.469 (10) Å V = 1890 (2) Å³

Data collection

Bruker APEXII CCD area-detector	11481 measured reflections
diffractometer	2365 independent reflections
Absorption correction: multi-scan	1480 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.041$
$T_{\min} = 0.958, T_{\max} = 0.979$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ 137 parameters $wR(F^2) = 0.135$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.24$ e Å $^{-3}$ 2365 reflections $\Delta \rho_{min} = -0.19$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O2-H2\cdots N1^i$	0.82	1.83	2.6526 (18)	178
Symmetry code: (i)	$x, -y - \frac{1}{2}, z - \frac{1}{2}$			

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2447).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brandenburg, K. & Putz, H. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Lu, T. B. & Luck, R. L. (2003). Inorg. Chim. Acta, 351, 345-355.
- Luo, J. H., Zhao, Y. S., Xu, H. W., Kinnibrugh, T. L., Yang, D. L., Timofeeva, T. V., Daemen, L. L., Zhang, J. Z., Bao, W., Thompson, J. D. & Currier, R. P. (2007). *Inorg. Chem.* 46, 9021–9023.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Z = 8

Mo $K\alpha$ radiation

 $0.33 \times 0.25 \times 0.20 \text{ mm}$

 $\mu = 0.10 \text{ mm}^-$

T = 296 K

supplementary materials

Acta Cryst. (2009). E65, o1239 [doi:10.1107/S1600536809015530]

3-(4-Pyridyl)benzoic acid

J. Xing

Comment

As part of an ongoing investigation into coordination polymer with pyridine carboxylate (Lu et al., 2003; Luo et al., 2007), the crystal structure of the title compound is presented here.

The molecule of the title compound, $C_{12}H_9NO_2$, is not planar, the phenyl and the pyridine rings make a dihedral angle of 32.14 (7)° (Fig. 1). The acetic group is slightly twisted with respect to the phenyl ring by 11.95 (10)°. In the crystal structure, intermolecular O-H…N hydrogen bonds link neighboring molecules into infinite chains along the c axis (Table 1, Fig. 2).

Experimental

Commercially available 3-Pyrid-4-ylbenzoic acid was further purified by repeated recrystallization anhydrous ethanol from. Single crystals suitable for X-ray analysis were grown by slow evaporation of an anhydrous ethanol solution at room temperature.

Refinement

All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C-H = 0.93 Å and O-H= 0.82 Å with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. Molecular structure of the title compound with the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probalility level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. Partial packing view showing the formation of infinite chain through the O-H…N hydrogen bondings. H bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.

3-(4-Pyridyl)benzoic acid

Crystal data	
C ₁₂ H ₉ NO ₂	$F_{000} = 832$
$M_r = 199.20$	$D_{\rm x} = 1.400 {\rm ~Mg~m^{-3}}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å

Hall symbol: -P 2ac 2ab a = 13.839 (3) Å b = 7.013 (7) Å c = 19.469 (10) Å V = 1890 (2) Å³ Z = 8

Data collection

Cell parameters from 1695 reflections $\theta = 2.6-24.3^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.33 \times 0.25 \times 0.20 \text{ mm}$

Bruker APEX2 CCD area-detector diffractometer	2365 independent reflections
Radiation source: fine-focus sealed tube	1480 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.041$
T = 293 K	$\theta_{\text{max}} = 28.5^{\circ}$
φ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -12 \rightarrow 18$
$T_{\min} = 0.958, \ T_{\max} = 0.979$	$k = -9 \rightarrow 8$
11481 measured reflections	$l = -25 \rightarrow 26$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.135$	$w = 1/[\sigma^2(F_o^2) + (0.0645P)^2 + 0.2238P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.001$
2365 reflections	$\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$
137 parameters	$\Delta \rho_{\text{min}} = -0.18 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
01	0.40429 (11)	0.07701 (18)	0.11778 (6)	0.0584 (4)
O2	0.36926 (10)	-0.18026 (17)	0.17987 (6)	0.0522 (4)
H2	0.3707	-0.2322	0.1422	0.078*
N1	0.37092 (10)	-0.1441 (2)	0.55920 (6)	0.0404 (4)
C1	0.32413 (12)	0.1110 (2)	0.48533 (8)	0.0394 (4)
H1	0.2910	0.2254	0.4801	0.047*
C2	0.32519 (12)	0.0204 (2)	0.54811 (8)	0.0409 (4)
H2A	0.2924	0.0767	0.5845	0.049*
C3	0.41717 (12)	-0.2214 (2)	0.50565 (8)	0.0412 (4)
H3	0.4495	-0.3362	0.5123	0.049*
C4	0.41965 (13)	-0.1406 (2)	0.44148 (8)	0.0384 (4)
H4	0.4527	-0.2007	0.4059	0.046*
C5	0.37253 (11)	0.0313 (2)	0.42988 (7)	0.0333 (4)
C6	0.37464 (11)	0.1281 (2)	0.36208 (7)	0.0351 (4)
C7	0.37848 (12)	0.0237 (2)	0.30137 (8)	0.0367 (4)
H7	0.3784	-0.1088	0.3034	0.044*
C8	0.38238 (11)	0.1135 (2)	0.23794 (8)	0.0370 (4)
C9	0.38217 (13)	0.3104 (2)	0.23504 (9)	0.0449 (4)
H9	0.3859	0.3718	0.1928	0.054*
C10	0.37647 (14)	0.4159 (2)	0.29454 (9)	0.0517 (5)
H10	0.3752	0.5484	0.2922	0.062*
C11	0.37260 (13)	0.3262 (2)	0.35748 (9)	0.0449 (4)
H11	0.3686	0.3989	0.3973	0.054*
C12	0.38692 (12)	0.0033 (2)	0.17260 (8)	0.0405 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0891 (11)	0.0554 (8)	0.0308 (7)	-0.0103 (7)	0.0039 (6)	0.0069 (6)
O2	0.0824 (10)	0.0435 (7)	0.0306 (6)	-0.0105 (7)	0.0057 (6)	-0.0034 (5)
N1	0.0462 (9)	0.0433 (8)	0.0316 (7)	-0.0036 (6)	-0.0016 (6)	0.0014 (6)
C1	0.0434 (10)	0.0387 (9)	0.0361 (9)	0.0052 (7)	0.0005 (7)	-0.0049 (7)
C2	0.0436 (10)	0.0468 (10)	0.0322 (9)	-0.0013 (8)	0.0036 (7)	-0.0073 (7)
C3	0.0483 (10)	0.0375 (8)	0.0377 (9)	0.0036 (8)	-0.0022 (7)	0.0007 (7)
C4	0.0460 (10)	0.0373 (9)	0.0319 (8)	0.0016 (7)	0.0039 (7)	-0.0037 (7)
C5	0.0374 (8)	0.0340 (8)	0.0285 (8)	-0.0034 (7)	-0.0011 (6)	-0.0023 (6)
C6	0.0381 (9)	0.0342 (8)	0.0330 (8)	-0.0005 (7)	0.0009 (7)	0.0000 (6)
C7	0.0452 (9)	0.0319 (8)	0.0330 (8)	-0.0011 (7)	0.0011 (7)	0.0008 (6)
C8	0.0406 (9)	0.0385 (9)	0.0320 (8)	-0.0026 (7)	-0.0008 (7)	0.0013 (6)
C9	0.0567 (11)	0.0409 (10)	0.0370 (9)	-0.0037 (8)	-0.0058 (8)	0.0095 (7)
C10	0.0732 (14)	0.0300 (9)	0.0519 (11)	0.0004 (9)	-0.0051 (9)	0.0038 (8)
C11	0.0590 (11)	0.0359 (9)	0.0399 (9)	0.0018 (8)	-0.0004 (8)	-0.0047 (7)
C12	0.0468 (10)	0.0423 (10)	0.0324 (9)	-0.0017 (7)	-0.0010(7)	0.0035 (7)

Geometric parameters (Å, °)

O1—C12	1.2102 (18)		C5—C6		1.485 (2)
O2—C12	1.318 (2)		C6—C7		1.391 (2)
O2—H2	0.8200		C6-C11		1.393 (2)
N1—C2	1.333 (2)		С7—С8		1.387 (2)
N1—C3	1.338 (2)		С7—Н7		0.9300
C1—C2	1.378 (2)		С8—С9		1.382 (2)
C1—C5	1.388 (2)		C8—C12		1.490 (2)
C1—H1	0.9300		C9—C10		1.377 (2)
C2—H2A	0.9300		С9—Н9		0.9300
C3—C4	1.372 (2)		C10-C11		1.379 (2)
С3—Н3	0.9300		С10—Н10		0.9300
C4—C5	1.389 (2)		С11—Н11		0.9300
C4—H4	0.9300				
С12—О2—Н2	109.5		C11—C6—C5		120.85 (13)
C2—N1—C3	116.83 (14)		С8—С7—С6		121.25 (15)
C2—C1—C5	119.96 (15)		С8—С7—Н7		119.4
C2—C1—H1	120.0		С6—С7—Н7		119.4
С5—С1—Н1	120.0		С9—С8—С7		119.33 (15)
N1—C2—C1	123.21 (15)		C9—C8—C12		118.92 (14)
N1—C2—H2A	118.4		C7—C8—C12		121.75 (15)
C1—C2—H2A	118.4		С10—С9—С8		120.19 (15)
N1—C3—C4	123.66 (16)		С10—С9—Н9		119.9
N1—C3—H3	118.2		С8—С9—Н9		119.9
С4—С3—Н3	118.2		C9-C10-C11		120.32 (16)
C3—C4—C5	119.64 (15)		С9—С10—Н10		119.8
C3—C4—H4	120.2		С11—С10—Н10		119.8
С5—С4—Н4	120.2		C10-C11-C6		120.77 (15)
C1—C5—C4	116.70 (14)		С10—С11—Н11		119.6
C1—C5—C6	121.14 (14)		C6-C11-H11		119.6
C4—C5—C6	122.15 (14)		O1—C12—O2		123.30 (16)
C7—C6—C11	118.12 (14)		O1—C12—C8		122.67 (16)
C7—C6—C5	121.03 (14)		O2—C12—C8		114.03 (14)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2···N1 ⁱ		0.82	1.83	2.6526 (18)	178

Symmetry codes: (i) x, -y-1/2, z-1/2.

Fig. 2